
Chemistry 125:  Instructions for Erwin Meets Goldilocks 
 

[Note the 5 problems for Monday’s problem set are found at the end of this document.  Many of the 
details on operating the program relate to an earlier version that would run only on a Mac.  The new 
JAVA version is much improved and instructions for operating it are found by clicking “Instructions 
for getting started with Java version Erwin Meets Goldilocks” on the course homepage.] 

 
To become comfortable with quantum mechanics you must reconstruct an 

intuition that was formed by activities like throwing balls and stretching springs that 
have been your daily activities since early childhood, as well as by Newtonian theory 
from previous science courses, such as "kinetic energy = 1/2 mv2".   

 
Unfortunately quantized systems are too small for us to experience in any very 

direct, physical way, and the arcane nature of differential equations keeps most 
people from gaining experience with quantum theory.  The first goal for Chemistry 
125 quantum mechanics is to develop a quantum intuition by observing and thinking 
about some problems and their solutions (without having to do math explicitly).  
Then we'll go on to treat atoms and bonds. 

Erwin meets Goldilocks is a homebuilt tool for Chem 125 that allows you to 
dabble with the ideas of quantum mechanics without worrying about its mathematical 
complexities. It treats a very simple problem (one particle in one dimension) and 
draws wave functions that satisfy the Schrödinger equation.  Using Erwin to see what 
happens as you change mass, total energy, and potential energy functions can build a 
valuable intuition about many of the most important and surprising phenomena of 
quantum mechanics, such as: 

Why energies are quantized under some conditions, not under others  
Why atoms don't collapse 
What makes a bond  
Why there is "zero-point energy" 
How atoms or electrons can “tunnel” 

Erwin provides a sort of quantum mechanical laboratory where you can learn by 
observing. 

 
The time-independent Schrödinger equation can be rearranged into the following 

form, which is a formula for the curvature of the wave function Ψ: 
 

d2Ψ/dx2 = mass ∗ Ψ ∗ (potential energy - total energy) ∗ (a known positive constant) 

 

For present purposes being given this formula is practically as good as being 
given Ψ itself, because as long as you know the amplitude and slope of Ψ at any one 
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point,1 you can start drawing Ψ there and use the curvature given by the equation to 
guide your pen along the proper path as potential energy and Ψ change.  This is 
exactly what the program does.  It starts at the left of the screen with small positive 
amplitude and zero slope,2 calculates the curvature, moves to the next point to the 
right, calculates the new slope and the new curvature, and so on.  As long as the slope 
isn’t changing too rapidly, this point-by-point extrapolation will work fine. 

Wherever the total energy is greater than the potential energy, the curvature 
(positive when Ψ is negative, negative when Ψ is positive) is such as to lead the 
function back toward the Ψ = 0 baseline.  But in the "classically forbidden" regions 
(where potential energy is greater than total energy) Ψ  can run into trouble, shooting 
off to + or - infinity.  Only by choosing just the right values of total energy can you 
avoid this and have Ψ approach the baseline asymptotically.  In bound situations 
(where potential energy exceeds total energy in the far regions at both ends), the 
energy of systems is quantized in order to give well-behaved, non-infinite wave 
functions, which, as far as we can tell from Nature, are the only type that can 
represent reality in these situations. 

To run the program you must first define the problem by choosing a mass for 
the particle and a form for the potential energy as a function of position.  To get 
started you might choose 1 for the mass (the mass of a proton) and specify one of the 
potential energies from the following list (depending on the choice there may be 
more parameters to specify):3 

Constant (zero) potential energy.  This is like a particle in free space. 

Decaying Exponential potential energy that starts very high on the left and 
falls to become essentially constant at zero on the right.  This is like a 
particle in free space which can run into a softish wall on the left. 

Harmonic Oscillator.  This parabolic potential is often used as a crude 
approximation of a bond holding the particle (atom) whose mass you have 
specified.  Such a potential is unrealistic, since the force pulling the atom 
back to the center always keeps increasing, and the bond can never break, 
but has been much studied because of mathematical tractability.  If you 
choose the harmonic oscillator you must specify the strength of the bond 

                                         
1 The initial amplitude can be set arbitrarily, since multiplying Ψ by a constant makes no difference 

in its ability to solve the Schrödinger Equation.  In the following applications, it is safe assume 
that at the far left of the region of interest the slope is zero, or close enough to zero to make no 
difference. Soon you’ll be able to figure out why this is so. 

2 The mass can be subsequently altered with the Define Problem / Mass. 
3 Initial parameters for a given type of potential can be altered with Plot / Edit.  The type of 

potential may be changed by returning to Define Problem / Potential. 
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that holds your particle by typing 1 for a single bond, 2 for a double, etc.  
Fractional values are OK. 

Double Minimum is a potential from two intersecting parabolas.  This would 
represent a particle that is attracted to two other particles, one on the left, 
the other on the right by inverse force laws.  Classically it would have to 
gather some energy to jump from one well to the other, that is, to move 
from being bonded from one neighbor to being bonded to the other.  This 
potential is ideal for studying the phenomenon of tunneling, and the closely 
related phenomenon of chemical bonding.  Here you are asked to specify 
five parameters: the bond strengths on either side of the middle (one bond 
could be stronger, but you might begin with them equal), the distance in Å 
between the bottoms of the two wells (how far the particle has to move to 
change bonds - try someting fairly small at first, perhaps 0.5Å), the 
difference in depth of the two wells (you might try 0 kcal/mole at first), 
and the amount of "coupling" (this is the amount by which you decide to 
lower the energy at the otherwise sharp intersection of the two parabolas, it 
makes the potential more realistic by allowing forming the bond to the new 
neighbor to help offset the energy requirement of breaking the old one). 

Morse is a more realistic bonding potential than the harmonic oscillator, 
because it describes a bond that can break.  It is characterized by depth, the 
energy required to break the bond, and by the curvature at the bottom of the 
potential energy well, which is expressed in terms of the equivalent  
"harmonic bond strength" (1 for single bond, 2 for double, etc.).  For 
plotting purposes you must also specify the distance in Å of the potential 
energy minimum from the left edge of the screen.1 

Coulombic (1/distance) potential.  This is a sort of one-dimensional H-like 
atom (electron in the field of a nucleus).  It needs special attention because 
as the distance approaches zero, the potential energy falls without limit and 
the curvature would become infinite. There are some bugs in this part of the 
program, but you should at least see what kind of solutions this potential 
has.  Remember to choose the small mass of the electron.  You are asked to 
specify a horizontal plot range (electrons are so light that they can cover 
much more territory than nuclei), a maximum calculable binding energy, 
i.e. how far below the energy of separated particles you want the graph to 

                                         
1 For the Morse potential the auto-solve feature of the program may give an erroneous solution that 

does not approach the baseline asymptotically.  If that happens with the Morse or another 
confining potential, increase the horizontal plot range (Dimensions/Distance) until the approach 
becomes asymptotic. 
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extend (the true potential energy decreases without limit near the nucleus), 
and the nuclear charge. 

 
When you have specified the potential, click the Create button to see a plot of 

the potential.  You may want to rescale the potential energy by changing the upper and 
lower limits of the plot (Dimensions / Energy), or you could change the horizontal 
range of particle position in Å (Dimensions / Distance).  The boundary between gray 
and white shows the potential energy (you can change the appearance of the potential 
plot with View / Potential Fill Color or Potential Border Color).  

You have stated the problem by specifying the mass and the potential, you need 
to find the shape of the wave function for the particle in this potential.   So now click 
New Solution to give a colored window to use for your guessing game. You are 
asked to guess a value for the total energy.  The computer then superimposes a plot of 
Psi with the same horizontal axis as the potential plot.  This horizontal axis is the 
position of the particle in Å.. 

So there are two graphs: One graph is of energy and its vertical axis goes from 
zero on the bottom to a value shown at the top left.1  The energy plot includes both the 
potential you have chosen and a horizontal dashed line showing the total energy 
you have guessed.  

The other graph, superimposed on the energy one, shows the trial wave 
function, which the computer draws (according to the total energy you guessed) as a 
solid line with Ψ = 0 being a horizontal line across the center of the plot area.  Don’t 
be confused by the superposition.  It is handy because the two plots have the same 
horizontal axis (particle position), which makes it easy to see the influence of energy 
on the shape of the wave function. 

If the wave function doesn't shoot off to + or - infinity anywhere, you've guessed 
a proper energy and found a solution (Congratulations! You're either fabulously lucky 
or you chose a non-quantized system).  If it does shoot off, you need to change your 
energy guess in the attempt to keep Ψ finite.  You do this by editing the Energy value 
colored solution window.  Much of your sense of what it means to be quantized will 
be developed by the process of guessing again and again, trying to figure out what 
will constitute a good guess. (Don't use the Solve option, designed for wimps and 
people in a hurry who have already mastered the concept, until you've really grasped 
this.) 

By clicking New Solution you can launch a new guess with a different color 
(chosen through Color). 

You can spend a lot of time trying to guess an energy that will keep Ψ finite all 
the way to the right of the screen.  For most quantized problems the program can't 
express numbers precisely enough to achieve this goal.  It becomes a case of 
bracketing a proper energy between one that is too high (and shoots off one way to 
                                         

 



Erwin Meets Goldilocks Instructions           9/16/08 Page 5 
 
infinity) and one with one fewer nodes that is too low (and shoots off the other way).  
This is where Goldilocks comes in.  Some players get enthralled and continue 
guessing to bracket the solution more and more tightly, until they reach the limit of 
the computer's precision or their patience.  

When you've gotten the idea firmly and are tired of spending so much of your 
time guessing, you can use the Solve button in the New Solution window to do the 
guessing automatically and find the next-higher-energy (or next-lower-energy) 
solution from your current guess.1 

It is possible to save and recall your work under Project. 
You can see the plot of probability distribution (Ψ2), by checking the prob box 

in the solution window. 
As you plot wavefunctions think (in term of the Schrödinger Equation) 

about how and why they vary with mass, total energy, potential energy.  Think 
about where the particle spends its time in states of different energy (Ψ2 is good 
for this).  Think about the relation of nodes to energy.  Think about what is 
determining the curvature of Ψ . Think why there can't be a node in a forbidden 
region at one end of the graph.  

If you don't think carefully, your intuition won't develop as rapidly. 
 

 
GROUP PROBLEMS FOR SEPTEMBER 22 

 
Mostly I'd like you to play around with the program, making discoveries of 

your own, so as to build your quantum intuition.  You should each learn enough to be 
able to answer the following questions.  It is unrealistic to think that each of you will 
have time to make all of these discoveries for yourself and write up answers, so I 
suggest that you form groups of up to five students and collaborate (Experience 
suggests that 3 in a group gives the best learning.  You can turn in one set of answers 
on Monday, September 24 for the group as a whole.  Get together and discuss what 
you're finding as you go along, then assign the write-up responsibilities for different 
problems (or parts of problems) to different individuals.  Teach each other what 
you've learned.  Don't just copy or let your friends learn without explaining to you.  
Don't allow yourself to get frustrated.  If in working together you don't see the 
answer, seek help.  It's simplest to work the problems in the order given. Start early.  

 
                                         
1  Solve works by guessing and bracketing, just as you do, and it doesn't make Ψ exactly asymptotic 

on the right either, it just finds a very good approximation.  In fact numerical approximations are 
used that mean the wave functions and energies are not precisely accurate anyway. For example, 
choosing a high total energy - say 400 kcal/mole - for a particle of mass 1 with constant potential 
energy should give a cosine wave, but the program plots a wave with increasing amplitude because 
of accumulating error. This problem is especially acute when wavelengths are short. If you 
want to try moderating this problem you can reduce the step size under Modify Details. 
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Troubleshooting: The most common difficulty for beginners is when the 
program appears to draw no Ψ at all.   This results from choosing systems that 
involve too large a range in which the potential energy is far above the total 
energy, so that the computer isn't precise enough to keep Ψ manageable over 
the range of interest.  You can narrow the range (or increase the total energy).  
You can get a nonsensical Ψ by guessing too high a total energy (or mass), 
making the wavelength too small for the program's approximations to deal with 
properly. 

 
WARNING:  The observations and questions in the problem set below make 

excellent exam fodder. 

1. Use constant potential energy to study how mass and total energy influence Ψ.  
Try to discover quantitative relationships.  [This relates to using an electron 
microscope to "see" objects with high resolution (the electron's mass is 0.00054 of 
the proton's; because it's so light try 50 kcal/mole and 10Å plot width for a start)]. 

2. Use the exponential potential energy to see how easy it is to find a satisfactory 
Ψ when the system is confined on only one side.  In what ways is this Ψ similar to 
the Ψ for constant potential energy?  Explain the behaviour of Ψ in regions of 
negative kinetic energy. How can you tell by looking at Ψ what region has potential 
energy greater than total energy (and thus negative kinetic energy) and at what point 
they are the same (zero kinetic energy)? 

3. Use the harmonic oscillator to see how hard it is to find a satisfactory Ψ when 
the system is energetically confined (“bounded”) on both sides.  Find the lowest 
energy Ψ (no nodes) and the next lowest (one node).  Then try to predict at what 
energies other successive Ψs will be found, and see if you are right.  What is the 
pattern of allowed energies, and how does it relate to the lowest possible energy? 
(This so-called zero-point energy, of the Ψ with zero nodes, is the minimum energy 
such a system must have even at absolute zero of temperature.)  What happens to the 
lowest allowed energy if you double the mass, and how does it change with the 
strength of the bond?1  Where does the particle with the lowest allowed energy spend 
most of its time? How about one in the tenth energy level?  (Where does a classical 
pendulum spend most of its time?) 

4. Use the Morse potential to see how a system can be quantized for some energies 
and not for others.  How similar is its progression of allowed energies to that of the 
harmonic oscillator with the same bond strength? 
                                         
1 This is the source of proton/deuterium isotope effects. 
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5. Use the double minimum potential to see how a particle can "tunnel" through a 
region where it has negative kinetic energy.  Do this by finding a pair of satisfactory 
Ψs with energies that are near, but below, the top of the hill between two equivalent 
valleys.  The lower one must have an even number of nodes, and the upper one must 
have one additional node.  The energy difference between these functions, expressed 
as a frequency, is how fast the particle would tunnel through the energy barrier 
(multiply kcal/mole by 1013 to get jumps per second). 


