
Chemistry 125 Fifth Examination February 2, 2006

Name

1. (2 min) Draw the mechanism for the **propagation** steps in the free-radical chain "machine" for halogenation of the alkane R-H by the halogen molecule X-X.

2. (2 min) In discussing the selectivity of free-radical halogenation of n-butane, the text presents data both for chlorination in the vicinity of room temperature and for bromination at about 1.5 times room temperature.

In one case the ratio of the two products is 72/28 = 2.6; in the other case their ratio is 98/1.8 = 54.

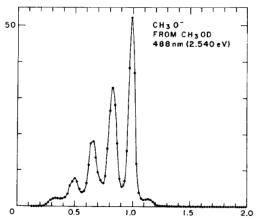
CIRCLE the ratio that is for CHLORINATION (no explanation necessary).

Also draw a double arrow (\Downarrow) in your scheme for Question 1 to indicate which step determines the ratio of primary to secondary product.

3. (9 min) Use the data Question 2 to estimate values for the *difference* in energy of activation ($\Delta\Delta H^{\dagger}$) for abstraction of **primary and secondary H by Cl**•. [Feel free to make reasonable numerical approximations, but explain what you are doing. The log table at the right is plenty precise.] **Repeat** for abstraction by Br•.

n	log(n)
1	0.00
2	0.30
3	0.48
4	0.60
5	0.70
6	0.78
7	0.85
8	0.90
9	0.95
10	1.00

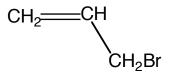
- Page 2
- **4.** (7 min) Explain how your answer to Question 3 illustrates the Hammond Postulate. You may want to use data from the tables on the last two pages of this exam to refresh your memory about bond dissociation energies.


5. (6 min) Why would one expect to obtain different isomers of butyne after equilibrating with an amide base (like KNHCH₃) than after equilibrating with an alkoxide base (like KOCH₃)?

6. (3 min) What reaction did Moses Gomberg use to prepare tetraphenylmethane?

7. (6 min) The terms "Markovnikov" and "anti-Markovnikov" can be applied to regiochemical selectivity in the ionic and free-radical addition of HBr to 1-propene. Although elementary textbooks suggest that the bias is 100% (all one product), there must be some of minor product present in each case. Explain in terms of orbital mixing which mechanism (ionic or free-radical) should give a stronger bias in favor of its preferred product?

^{8.} (3 min) What is remarkable about the R-R' bond dissociation energies in the ten hydrocarbons [boxed on p. 6] that cleave to form any combination of the methyl, ethyl, iso-propyl and t-butyl radicals (after correcting for strain energy of the starting material using molecular mechanics)? Mention also the trend in R-H and R-OH BDE values.


9. (6 min) Explain how the "photoelectron spectrum" of the CH_3O^- anion allowed accurate determination of the bond dissociation energy of CH_3O-H . It would help to draw an energy diagram.

10. (6 min) Assign numbers 1-4 to indicate the relative reactivity of the following alkenes in addition of HCl. Use **1** for the **most** reactive. Use this ranking to **describe three different influences** on reactivity.

CH2 CH OCH₃

CH₂—CH ĊΗ₃

id Ellison
nan
Blanksby
Molecules
ji:
Orgai
ъ
nergies
ц
ati,
.iS
Disso
Bond

Table 1. Molecular Bond Dissociation Energies for RH → R + H: Experimental Bond Enthalpies and Radical

			Heats of Formation at 298 K	1 at 298 K	s K		
	DH_{298} (kcal mol ⁻¹)	$\Delta_{\rm f} H_{\rm 298}({ m R})$ (kcal mol ⁻¹)	ref		DH_{298} (kcal mol ⁻¹)	$\Delta_{\rm f} H_{\rm 298}({ m R})$ (kcal mol ⁻¹)	ref
Hz	104.206 ± 0.003	-++	Inorganics 4	H + _0 ← _H0	++	-++	34
HF	136.25 ± 0.01	++	9	0H+ → 0 + H+	$+\!\!+\!\!$	$+\!\!+\!\!$	34
HCI	103.15 ± 0.03	29.03 ± 0.04	6	H_2S	$+\!\!\!+\!\!\!$	$+\!\!+\!\!$	9
HBr	87.54 ± 0.05	++	6	SH		66.2 ± 0.3	9
IH	71.32 ± 0.06	$+\!\!+\!\!$	6	ON-H	$+\!\!+\!\!$	$+\!\!+\!\!$	4
H-CN	126.3 ± 0.2	105.0 ± 0.7	9	H-ONO (trans)	$+\!\!+\!\!$	$+\!\!+\!\!$	4
NH ₃	107.6 ± 0.1	+	9	$H-0NO_2$	$+\!\!+\!\!$	$+\!\!+\!\!$	35
H ₂ O OH	118.82 ± 0.07 101.76 ± 0.07	8.86 ± 0.07 59.55 ± 0.02	34 34	SiH ₄ GeH ₄	91.7 ± 0.5 83 ± 2	47.9 ± 0.6 53 ± 2	00
			Hydrocarbone				
CH4	104.99 ± 0.03	35.05 ± 0.07	31	CH ₂ CH-H	110.7 ± 0.6	71.1 ± 0.7	9
CH3	110.4 ± 0.2	+	31	HCC-H		+	36
CHz	101.3 ± 0.3	+	6	C ₆ H ₅ -H	112.9 ± 0.5	80.5 ± 0.5	9
CH	80.9 ± 0.2	$+\!\!+\!\!$	6	$C_6H_5 \rightarrow o-C_6H_4 + H$	78 ± 3	106 ± 3	37
CH ₃ CH ₂ -H	101.1 ± 0.4	29.0 ± 0.4	10	$C_6H_5 \rightarrow m-C_6H_4 + H$	94 ± 3	122 ± 3	37
(CH ₃) ₂ CH-H	98.6 ± 0.4	$+\!\!+\!\!$	10	$C_6H_5 \rightarrow p-C_6H_4 + H$	$+\!\!+\!\!$	$+\!\!+\!\!$	37
CH ₃ CH ₂ (CH ₃)CH-H	98.2 ± 0.5	$^{+}$	10	CH ₂ CHCH ₂ -H	$+\!\!+\!\!+$	$+\!\!+\!\!$	38
$(CH_3)_3C-H$	96.5 ± 0.4	12.3 ± 0.4	10	C ₆ H ₅ CH ₂ -H	89.8 ± 0.6	49.7 ± 0.6	38
			Alcohols				
H-CH ₂ OH	96.1 ± 0.2	$+\!\!+\!\!$	16	CH ₃ CH ₂ O-H	$+\!\!+\!\!$	-3.6 ± 0.8	9
CH_3O-H	104.6 ± 0.7	$+\!\!+\!\!$	9	(CH ₃) ₂ CHO-H	105.7 ± 0.7	++	9
CH ₃ S-H	87.4 ± 0.5	$+\!\!+\!\!$	39,40	(CH ₃) ₃ CO-H	++	$+\!\!+\!\!$	9
H-CH ₂ SH	94 ± 2	36 ± 2	39, 40	C ₆ H ₅ O-H	90 ± 3	-58 ± 3	41
			Peroxides				
Н00-Н СН ₃ 00-Н	87.8 ± 0.5 88 ± 1	3.2 ± 0.5 4.8 ± 1.2	$^{14}_{42}$	CH ₃ CH ₂ OO-H (CH ₃) ₃ COO-H	85 ± 2 84 ± 2	-6.8 ± 2.3 -25.2 ± 2.3	42
			Carbonyls				
H-CHO	88.144 ± 0.008	10.1 ± 0.1	9	H−COOH is ≥	$+\!\!+\!\!$	++	45
СН ₃ С(0)-Н Н_СН ₂ СНО	89.4 ± 0.3	-2.4 ± 0.3 2 5 ± 2 2	43 0	CH ₃ COO-H C-H-COO-H	112 ± 3 111 ± 4	-43 ± 3 -12 ± 4	44
HC00-H	112 ± 3	-30 ± 3	44		H	H	r F

tholmine DH. (troat mat-1) a	CH ₂ CHCH ₂ Dhenyl benzyl methoxy formyl acetyl CH ₂ CHCH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅ CH ₃ O HC(O) CH ₃ C(O)	H 104.9(0.1) 101.1(0.4) 98.6(0.4) 110.7(0.7) 88.8(0.4) 112.9(0.6) 89.7(0.7) 88.1(0.2) 88.1(0.2) 89.7(0.3) 122.2(0.9) 115.6(0.3) 53.2(0.5) 53.2(0.5) 53.2(0.5) 53.2(0.5) 53.6(0.4) 53.6(0.7) 53.6(0.9) 53.6(0.7) 53.6(0.9) 53.6(0.7) 53.6(0.9) 53.6(0.7) 53.6(0.9) 53.6(0.7) 53.6(0.
Table 2. Experimental Bond Enthalpies, DH_{298} (kcal mol ^{-1)^a}	tyl vinyl cH2H2 cH2CH	(i) 110.7(0.7) 88.8(0) (i) 23.3(0.8) - (i) 59(1) (i) 91.2(0.7) 59(1) (i) - 45.6(0) (i) - 45.6(0) (i) - 80.8(0.8) 59(1) (i) - 45.6(0) (i) - 2008 (i) - 2008 (i) 100.0(0.8) 75.4(0) (i) 97.8(0.8) 75.2(0) (i) 97.8(0.8) 75.8(0.8) 75.2(0) (i) 97.8(0.8) 75.2(0) (i) 97.
	isopropyl <i>tert</i> -butyl CH(CH ₃) ₂ C(CH ₃) ₃	98.6 (0.4) 96.5 (0.4) 110.6 (0.5) – 73.9 (0.7) 72.6 (0.6) 57 (1) 55.6 (0.9) 95.5 (0.4) 95.8 (0.4) 86.0 (0.4) 85.7 (0.5) 120.9 (0.5) 117.8 (0.8) 62.9 (0.5) 117.8 (0.8) 62.9 (0.5) 117.8 (0.8) 88.6 (0.4) 87.5 (0.4) 88.6 (0.4) 87.5 (0.4) 87.1 (0.5) 85.6 (0.6) 87.1 (0.5) 82.7 (0.6) R R R R R R R R R and this in marked with second entry is weaked with second entry is weaked with second entry is weake
	ethyl is CH ₂ CH ₃ C	H 104.9(0.1) 101.1(0.4) 98.6(0.4) 96.6(0.5) - F 115(4) ^a - 110.6(0.5) - C1 83.7(0.1) 84.8(0.5) 85.2(0.5) 8 Br 72.1(0.3) 72.4(0.6) 73.9(0.7) 7 F 72.1(0.3) 72.4(0.6) 73.9(0.7) 7 CH ₃ O 83.2(0.9) 85(1) 94.0(0.4) 95.5(0.4) 9 CN 257.6(0.4) 85.2(0.5) 8 CN 212.6(0.2) 85(1) 85.8(0.5) 8 CH ₃ CH ₂ R 87.9(0.6) 87.1(0.5) 8 CH ₃ CH ₂ R R R R R R R R R R R R R R R R R R R
	methyl CH ₃	$ \begin{array}{c} 104.9(0.1) \\ 115(4)^{a} \\ 83.7(0.1) \\ 72.1(0.3) \\ 57.6(0.4) \\ 92.1(0.1) \\ 83.2(0.9) \\ 83.2(0.9) \\ 83.2(0.9) \\ 85.2(0.3) \\ 122.4(0.7) \\ 85.2(0.3) \\ 122.4(0.7) \\ 61.0(0.2) \\ 90.1(0.1) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 61.0(0.2) \\ 122.4(0.7) \\ 1$
		H F CI Br HO CH Br HO CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ C

Bond Dissociation Energies of Organic Molecules Blanksby and Ellison

Chem 125 Fifth Exam

Chem 125 Fifth Exam

4.

(4 min)

Assuming that there are similar concentrations of RH and Br_2 in your mechanism for Question 1, explain which radical should be in higher concentration $Br \bullet$ or $R \bullet$.