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1.

 =  Const  ( e-a1 r1) ( e -a2 r2) ( r3 e- a3 r3  cos 3)

a)
(3 min)  What atomic or molecular system might the wavefunction  be written to describe?   


A 3-electron  atom (such a product  is the orbital approximation to a many-electron  wavefunction).  Since it describes the configuration 1s,1s,2p, it is the EXCITED state of such an atom - for example Lithium.

b)
(4.5 min)  Give each of the 3 expressions in a name.  Explain where it came from and what the numerical subscripts mean.

( e-a1 r1)
1s of electron 1.  Comes from the lowest-energy solution of an H-like atom.  The subscripts denote the first electron, that is r1 is the distance of electron number 1 from the nucleus.
 ( e -a2 r2)
1s of electron 2.  Comes from the lowest-energy solution of an H-like atom.  The subscripts denote the second electron, that is r2 is the distance of electron number 2 from the nucleus.
( r3 e- a3 r3  cos 3) 2pz of electron 3.  Comes from solution of an H-like atom.  The subscripts denote the third electron, that is r3 is the distance of electron number 3 from the nucleus, and r3cos3 is the z-coordinate value of electron number 3.
c)
(6 min)  Use  to describe in words how one goes about improving a wave function by the Self-Consistent-Field procedure without introducing any additional terms into the formula.

One would start with the function above, where the constants are taken from solutions of the H-like one-electron  atom.

Without adding any additional terms into the formula, one could adjust the size of the constants a1, a2, and a3 to vary the extension of the orbitals  (always varying  "Const" at the same time to keep the function normalized, its integral over all space = 1).  For example, decreasing  the value of a1 would require increasing r1 to get the same decrease in the value of the 1s orbital for electron 1, thus expanding the orbital and helping decrease repulsion from the other 1s electron, which is most dense at the nucleus.

In the SCF procedure, one would first vary a1 to get the lowest average total "energy" (kinetic + e-e repulsion + e-nuclear attraction).  Note that this is not a true total energy, independent of particle positions, since the function is not a true solution to the Schrödinger equation. Still one can minimize the averaged sum of the "energy"  components.

Next one would keep this value for a1 and adjust a2 to minimize the average "energy".  Then hold these values of a1 and a2 while minimizing with respect to a3.

Repeat the cycles of adjusting the a values until the average "energy" ceases dropping.  At this point one has the SCF solution.

(Obviously introducing other terms in the description of the atomic orbitals would allow greater flexibility in adjusting their shapes.)
d)
(2.5 min)  What is fundamentally wrong with a wavefunction of this type?

This type of product function treats each electron as a static cloud of probability density.  It does not allow for dynamic correlation of the electron motions allowing the electrons to avoid being in the same neighborhood at the same time. 

2. 
(5 min) How much hybridization is there in the bonding MO of H2?  Explain what factor favors this hybridization, and what opposes it.

The bonding MO of H2 has about 3% 2p character on each atom and about 1/2% of 2s. (Note that this is an example of a more flexible wavefunction than sticking with purely 1s AOs.)

This hybridization increases overlap between the AOs on the two hydrogen nuclei, but at the expense of having a higher-energy description of each atom (mixing higher energy 2p and 2s orbitals with the 1s orbital).

3.
The following three wave functions satisfy the Schrödinger equation for double-minimum potentials. Two of the functions come from the same potentials with wells of equal depth, another has wells of different  depth.


I.
II.
III.
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a) 

(4.5 min)  Describe each wave function in terms of simpler wave functions that would solve the Schrödinger equation for isolated individual harmonic potentials corresponding to half of the double-minimum well.

I.
This wave can be analyzed as the "difference" (unfavorable combination) of nodeless 1-dimensional wavefunctions for each of the two adjacent identical parabolic wells.  Note that each component wave is very symmetrical within itself, meaning that there is too little overlap to distort it in the region of destructive overlap.  [Because there is no significant overlap, this wavefunction (and the corresponding favorable combination of the same two waves) would have the same energy as either of the individual one-well wavefunctions.]

II.
This wave can be analyzed as the favorable combination of one-node wavefunctions for each of the two adjacent identical parabolic wells. (Whether you call this the sum or the difference depends on how you assigned signs to the component functions.)  Note that there is overlap for the one-node wavefunctions, where those with no nodes showed no significant overlap.  This is because the higher-energy functions extend further from the center of the energy wells into the overlap region.  [Since the component waves overlap, this wavefunction would have less energy than the individual one-well wavefunctions.]

III.
This wave can be analyzed as the favorable combination of a nodeless wavefunction in the left well with a one-node wavefunction in the right well.  Since both functions have significant amplitude, the functions must have comparable energy, meaning that the well on the right must be deeper, allowing its one-node function to have a comparable energy to the nodeless function in the left well.  In fact it has a slightly lower energy than the nodeless function as can be seen from its greater size.

(continued next page)

(Question 3 continued)

b)
(7 min) Assuming that the very bottom of the left wells are at the energy shown by the dashed line below, draw three energy level diagrams (for I-III) .  In each show the two component single-minimum wavefunction energies flanking the two energy levels of the paired composite wavefunctions. Use the same energy scale on all three diagrams, and be sure to label the composite levels I, II, and III.      [Hint: I and II have different overlap.]
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Notes:  The component, single-minimum, wavefunction energies of I, II and III (left) are not as low as the bottom of the parabolic well because of zero-point energy.  The one-node  components of wavefunction II are of course higher in energy than the nodeless wavefunctions on both sides of I and on the left of III.  The one-node  component on the right of III is lower in energy than its nodeless mate on the left, because it is larger in the favorable combination of III.

I is the unfavorable high-energy combination, II and III are favorable low-energy combinations.

In I there is very little overlap and negligible shift of the combination function energies.  In II there is significant overlap and a substantial shift.  In III there is significant overlap, but poorer energy match than in II.

c)
(7.5 min)  Although wavefunctions I-III were derived to describe a proton in harmonic double-minimum potentials, each is a very close analogue of a particular electronic molecular orbital for some diatomic molecule.  Explain what MO in what molecule each would be analogous to.

 I.
This is analogous to the antibonding combination of nodeless 1s orbitals for bonded fluorine atoms.  The overlap is negligible for compact 1s orbitals at the bonding distance, so the energy is not shifted significantly from that of the component AOs.

II.
This is analogous to the bonding combination of 2p orbitals for bonded fluorine atoms.  The component atomic orbitals have a node perpendicular to the bonding direction, and the AOs combine favorably with enough overlap to give significant shift of the bonding (and antibonding) MOs.

III.
This is analogous to the bonding combination of a nodeless 1s orbital of hydrogen  (on the left) with a 2p AO of fluorine on the right.  The overlap and energy shift are significant and the bonding orbital is closer in energy (and shape) to the 2p AO of fluorine than to the 1s orbital of hydrogen.

4.
It is more difficult to distort BH3 away from planarity than CH3.

a)
(5 min) Provide specific experimental evidence to support this statement, using several sentences to explain the evidence.

BH3 absorbs 1141 cm-1 infrared radiation; CH3 absorbs lower-energy  608 cm-1 infrared radiation. The larger separation of vibrational energy levels for BH3 shows a steeper parabolic energy well for distortion from planarity (analogous to 1-D harmonic potential in Erwin Meets Goldilocks).

b)
(5 min)  Rationalize the greater stiffness of BH3 in terms of orbital energies.

Both BH3 and CH3 resist distortion because the bonds become weaker as the central atom loses s-character, and thus overlap, from its bonding hybrid AOs (sp2 for planar, sp>2 for distorted).

The difference comes in that CH3 has an additional (unshared) electron on the central atom.  As the molecule distorts, this electron acquires more s-character (changes from pure p in the planar geometry toward some spx hybrid in the pyramidal geometry).  This lowers the energy of this electron and helps distortion.  BH3 lacks such an electron and thus sees nothing good about bending to partially offset the loss of overlap.
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